Find the area of the region bounded by the functions f(x) = x4 and g(x) = |x|.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the area of the region bounded by the functions f(x) = x4 and g(x) = |x|.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

since both are even functions, you can focus on the portion in Q1 then just double that result to get the full area
in Q1, x > 0 when x > 0, |x| = x So when x > 0, g(x) = x

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

solve x^4 = x to find out where the two functions cross
x=1 and x=0
\[\checkmark\]
so you need to compute \[\Large 2*\int_{0}^{1}\left(g(x) - f(x)\right)dx\] where f(x) = x^4 g(x) = x
I don't think we get 2 in the front @jim_thompson5910
yes because of symmetry about the y axis
|dw:1444438095472:dw|
|dw:1444438146262:dw|
\[\Large \int_{0}^{1}\left(x-x^4\right)dx\] takes care of the right half. Double it to get both halves
oh, so the function is not x^4 =x, it should be x^4 =|x| to get both.
I made it g(x) = x when just focusing on when x > 0 (in quadrant 1)
to simplify the absolute value
Got you. Thanks for explanation :)
no problem
I got 0.6 as the final answer.

Not the answer you are looking for?

Search for more explanations.

Ask your own question