anonymous
  • anonymous
A single card is chosen at random from a shuffled standard fifty-two card deck (no jokers). Find the following probabilities. 1)What is the probability that the card is black? 2)What is the probability that the card is a heart? 3)What is the probability that the card is either a diamond or a 4? 4)What is the probability that the card is at least a 7 and at most a 9? That is, P(≥7∩≤9)
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
From a standard deck of cards, one card is drawn. What is the probability that the card is black and a jack? P(Black and Jack) P(Black) = 26/52 or ½ , P(Jack) is 4/52 or 1/13 so P(Black and Jack) = ½ * 1/13 = 1/26 A standard deck of cards is shuffled and one card is drawn. Find the probability that the card is a queen or an ace. P(Q or A) = P(Q) = 4/52 or 1/13 + P(A) = 4/52 or 1/13 = 1/13 + 1/13 = 2/13 WITHOUT REPLACEMENT: If you draw two cards from the deck without replacement, what is the probability that they will both be aces? P(AA) = (4/52)(3/51) = 1/221. 1 WITHOUT REPLACEMENT: What is the probability that the second card will be an ace if the first card is a king? P(A|K) = 4/51 since there are four aces in the deck but only 51 cards left after the king has been removed. WITH REPLACEMENT: Find the probability of drawing three queens in a row, with replacement. We pick a card, write down what it is, then put it back in the deck and draw again. To find the P(QQQ), we find the probability of drawing the first queen which is 4/52. The probability of drawing the second queen is also 4/52 and the third is 4/52. We multiply these three individual probabilities together to get P(QQQ) = P(Q)P(Q)P(Q) = (4/52)(4/52)(4/52) = .00004 which is very small but not impossible. Probability of getting a royal flush = P(10 and Jack and Queen and King and Ace of the same suit) What's the probability of being dealt a royal flush in a five card hand from a standard deck of cards? (Note: A royal flush is a 10, Jack, Queen, King, and Ace of the same suit. A standard deck has 4 suits, each with 13 distinct cards, including these five above.) (NB: The order in which the cards are dealt is unimportant, and you keep each card as it is dealt -- it's not returned to the deck.) The probability of drawing any card which could fit into some royal flush is 5/13. Once that card is taken from the pack, there are 4 possible cards which are useful for making a royal flush with that first card, and there are 51 cards left in the pack. therefore the probability of drawing a useful second card (given that the first one was useful) is 4/51. By similar logic you can calculate the probabilities of drawing useful cards for the other three.
anonymous
  • anonymous
The probability of the royal flush is therefore the product of these numbers, or 5/13 * 4/51 * 3/50 * 2/49 * 1/48 =
anonymous
  • anonymous
is what?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yes .00000154
anonymous
  • anonymous
this question doesn't answer what I'm asking
anonymous
  • anonymous
oh

Looking for something else?

Not the answer you are looking for? Search for more explanations.