eva12
  • eva12
1)test review let f(x)=1/sqrt(x) and 0
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

eva12
  • eva12
definition 55.a function f is said to be continuous at a point x if for every epsilon >0 there exists \[\delta>0\]such that |f(y)-f(x)| < epsilon for all y such that |y-x| \[<\delta\]
zepdrix
  • zepdrix
For \(\large\rm f(x)=\frac{1}{\sqrt{x}}\) to be continuous at c means \(\large\rm \forall\epsilon>0~~ \exists\delta>0:(x\in(0,1),|x-c|<\delta)\implies \color{orangered}{|\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{c}}|<\epsilon}\) Let's fiddle around with that orange part a little bit, maybe we can get somewhere.
zepdrix
  • zepdrix
Getting a common denominator gives us: \(\large\rm \left\lvert\dfrac{\sqrt{c}-\sqrt{x}}{\sqrt{cx}}\right\rvert\) since we're in absolute value, this is equivalent to\(\large\rm \dfrac{1}{\left\lvert\sqrt{cx}\right\rvert}\left\lvert\sqrt x-\sqrt c\right\rvert\) which is still less than our \(\large\rm \epsilon\).\[\large\rm \dfrac{1}{\left\lvert\sqrt{cx}\right\rvert}\left\lvert\sqrt x-\sqrt c\right\rvert<\epsilon\]Multiply the sqrt(cx) to the other side, and multiply both sides by the conjugate of what's in the absolute,\[\large\rm \left\lvert\sqrt x-\sqrt c\right\rvert\left\lvert\sqrt x+\sqrt c\right\rvert<\epsilon\left\lvert\sqrt x+\sqrt c\right\rvert\left\lvert\sqrt{cx}\right\rvert\]\[\large\rm \left\lvert x-c\right\rvert<\epsilon\left\lvert\sqrt x+\sqrt c\right\rvert\left\lvert\sqrt{cx}\right\rvert\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

zepdrix
  • zepdrix
I think we can drop the absolutes on the right safely... since it's all addition and square roots,\[\large\rm \left\lvert x-c\right\rvert<\epsilon\left(\sqrt x+\sqrt c\right)\sqrt{cx}\]
zepdrix
  • zepdrix
Actually, lemme color these a sec before I go any further,\[\large\rm \left\lvert x-c\right\rvert<\epsilon\color{royalblue}{\left(\sqrt x+\sqrt c\right)}\color{green}{\sqrt{cx}}\] So we were able to, sort of, build our delta inequality out of the epsilon one. So for \(\large\rm \delta<1\) we have:\[\large\rm |x-c|<1\]\[\large\rm -1
zepdrix
  • zepdrix
Multiplying equation (1) by c, and then taking the square root gives us,\[\large\rm \sqrt{c^2-c}<\sqrt{cx}<\sqrt{c^2+c}\]This helps us get rid of this dependence on x here,\[\large\rm \sqrt{c^2-c}<\color{green}{\sqrt{cx}<\sqrt{c^2+c}}\]
zepdrix
  • zepdrix
Going back, taking the square root of equation (1), and then adding sqrt(c) to all sides,\[\large\rm \sqrt{c-1}+\sqrt c<\sqrt{x}+\sqrt{c}<\sqrt{c+1}+\sqrt{c}\]This also helps us to get rid of that pesky x!\[\large\rm \sqrt{c-1}+\sqrt c<\color{royalblue}{\sqrt{x}+\sqrt{c}<\sqrt{c+1}+\sqrt{c}}\]
zepdrix
  • zepdrix
So we have that when \(\large\rm \delta<1\), \[\large\rm \left\lvert x-c\right\rvert\quad<\quad\epsilon\color{royalblue}{\left(\sqrt x+\sqrt c\right)}\color{green}{\sqrt{cx}}\quad<\quad\epsilon\color{royalblue}{\left(\sqrt{c+1}+\sqrt{c}\right)}\color{green}{\sqrt{c^2+c}}\]
zepdrix
  • zepdrix
\[\large\rm |x-c|<\epsilon(\sqrt{c+1}+\sqrt{c})\sqrt{c^2+c}\]
zepdrix
  • zepdrix
Let \(\large\rm \delta=\min\left\{1,~~\epsilon(\sqrt{c+1}+\sqrt{c})\sqrt{c^2+c}\right\}\)
zepdrix
  • zepdrix
I'm not really sure what we would say about \(\large\rm \delta>1\) though, hmm... Hopefully I did something right in there though D: Sorry I'm kinda new at these types of problems, just trying to see if I could work through it properly. I think that proves it for \(\large\rm \delta<1\).

Looking for something else?

Not the answer you are looking for? Search for more explanations.