anonymous
  • anonymous
check my work
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
We have to prove \[\lim_{x \rightarrow 2}x^3=8 \space \space ; \space \space \epsilon=0.001\] \[0<|x-2|<\delta \implies |x^3-8|<0.001\] Since \[\delta>0\]\[|x-2|=x-2\]\[00\] \[\delta=\frac{0.001}{12}=0.0833 \times 10^{-3}=8.33 \times 10^{-5}\] @ganeshie8 @IrishBoy123
anonymous
  • anonymous
looks good
anonymous
  • anonymous
nice explanation

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Also we can do \[f(2+\delta)=f(2)+\epsilon\]\[(2+\delta)^3=8+0.001=8.001\] \[2+\delta=2.0000833\]\[\delta=0.0000833\]
anonymous
  • anonymous
\[(\delta+2)^3=8(1 \pm \frac{0.001}{8})\]
anonymous
  • anonymous
yep
anonymous
  • anonymous
how did u get that step
anonymous
  • anonymous
I took a factor of 8 out
anonymous
  • anonymous
yep
anonymous
  • anonymous
why couldn't you just go straight to cube tubing this \[(\delta+2)^3=8\pm0.001\]
anonymous
  • anonymous
rooting
anonymous
  • anonymous
\[(1+x)^{n} \approx 1+nx \] if x is a small quantity
anonymous
  • anonymous
ah yes, your jogging my memory now!
anonymous
  • anonymous
looks good tbh
anonymous
  • anonymous
thanks
IrishBoy123
  • IrishBoy123
similar approach... \(|x^3-8|<\epsilon \implies \sqrt[3]{8-\epsilon } \lt x \lt \sqrt[3]{8+\epsilon }\) Binomial expansion: \(\sqrt[3]{8-\epsilon } = 2\sqrt[3]{1-\frac{\epsilon}{8} } \) \( = 2 [ 1+ (\frac{1}{3})(-\frac{\epsilon}{8}) + \frac{1}{2!}(\frac{1}{3})(-\frac{2}{3})(-\frac{\epsilon}{8})^2 + \frac{1}{3!} (\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})(-\frac{\epsilon}{8})^3 + \cdots ] \) \(= 2[1 - \frac{\epsilon}{24} - \frac{1}{9}\frac{\epsilon^2}{64} - \cdots ]\) \(\sqrt[3]{8+\epsilon } = 2[1 + \frac{\epsilon}{24} - \frac{1}{9}\frac{\epsilon^2}{64} + \cdots ]\) \(\implies 2[ - \frac{\epsilon}{24} - \frac{1}{9}\frac{\epsilon^2}{64} - \cdots ] \lt x-2 \lt 2[ \frac{\epsilon}{24} \color{red} - \frac{1}{9}\frac{\epsilon^2}{64} + \cdots ]\) which is *not* satisfied by \( - \frac{\epsilon}{12} \lt x-2 \lt \frac{\epsilon}{12} \), notice the highlighted minus sign. ie \(\delta = { \epsilon \over 12}\) does not work for this plug the actual numbers into the equation and i think you will see. i think you might need \(\delta = \frac{\epsilon}{12} - \frac{1}{9}\cdot\frac{\epsilon^2}{32}\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.