Derivative of y= (1+x^1/2)^2

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Derivative of y= (1+x^1/2)^2

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

here you have to apply the formula of the derivative of a function of function, namely: \[\frac{{df}}{{dx}} = 2\left( {1 + {x^2}} \right) \cdot \frac{{d\left( {1 + {x^2}} \right)}}{{dx}}\]
chain rule right? take the exponent bring it the front then leave that and then proceed to take the derivative of whatever is inside of the parenthesis
correct!

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

oops.. I made an error, here is the right step: \[\frac{{dy}}{{dx}} = 2\left( {1 + \sqrt x } \right) \cdot \frac{{d\left( {1 + \sqrt x } \right)}}{{dx}}\]
Thank you! I understand it now

Not the answer you are looking for?

Search for more explanations.

Ask your own question