anonymous
  • anonymous
I'm missing this conceptual connection... ln (b) is the slope at x=0 of the tangent to f(x)=b^x. What is the connection to e to that power being equal to base b?
OCW Scholar - Single Variable Calculus
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
phi
  • phi
here is an example with y= 5^x and the tangent line at (0,1) y= ln(5)x +1
1 Attachment
phi
  • phi
I assume you know that \[ e^{\ln(b)} = b\] so we can write \[ b^x = \left( e^{\ln(b)} \right)^x =e^{x\ln(b)} \] the ln(b) is a constant. The derivative with respect to x is \[ \frac{d}{dx} b^x= \frac{d}{dx} e^{x\ln(b)} = e^{x\ln(b)} \frac{d}{dx} x\ln(b) \\ = e^{x\ln(b)}\ln(b) \\= \ln(b)\ b^x \] at x=0 we get dy/dx= ln(b) thus the tangent to the curve y= b^x at x=0 is y-1= ln(b)(x-0) or y= ln(b) x + 1
anonymous
  • anonymous
Thank you... I do understand the derivation. I'm trying to conceptualize the significance of the rate of change at x=0 of b^x being the natural log.

Looking for something else?

Not the answer you are looking for? Search for more explanations.