• anonymous
A nonconducting rod with a uniformly distributed charge +Q. The rod forms a 10/24 of circle with radius R and produces an electric field of magnitude Earc at its center of curvature P. If the arc is collapsed to a point at distance R from P ,by what factor is the magnitude of the electric field at P multiplied?
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • schrodinger
I got my questions answered at in under 10 minutes. Go to now for free help!
  • ParthKohli
Kinda like this question. If the rod is collapsed at a point at distance \(R\) from the point, then it can be treated as a point charge producing an electric field of \(\frac{kQ}{R^2}\). If it is an arc, then we'll have to use calculus. 10/24th of a circle means that an angle of 150 degrees is subtended at the center.|dw:1444508331133:dw|
  • ParthKohli
\[dQ = \frac{6Q}{5\pi}d\theta \]We only need to calculate the vertical component of the electric field, as the horizontal would cancel out (see it for yourself!)\[dE_{y} = k \frac{dQ}{R^2}\cos \theta = \frac{6Qk}{5\pi R^2}\cos \theta d \theta \]Integrate the above from \(-5\pi/12 \) to \(+5\pi /12\).

Looking for something else?

Not the answer you are looking for? Search for more explanations.