Babynini
  • Babynini
More limits :)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Babynini
  • Babynini
#7
1 Attachment
jim_thompson5910
  • jim_thompson5910
\[ |x| = \begin{cases} x \ \text{ if } \ x \ge 0\\ -x \ \text{ if } \ x < 0\\ \end{cases} \] \[ |\color{red}{x}| = \begin{cases} (\color{red}{x}) \ \text{ if } \ (\color{red}{x}) \ge 0\\ -(\color{red}{x}) \ \text{ if } \ (\color{red}{x}) < 0\\ \end{cases} \] \[ |\color{red}{2x+1}| = \begin{cases} (\color{red}{2x+1}) \ \text{ if } \ (\color{red}{2x+1}) \ge 0\\ -(\color{red}{2x+1}) \ \text{ if } \ (\color{red}{2x+1}) < 0\\ \end{cases} \] \[ |2x+1| = \begin{cases} 2x+1 \ \text{ if } \ x \ge -\frac{1}{2}\\ -2x-1 \ \text{ if } \ x < -\frac{1}{2}\\ \end{cases} \] based on the last definition above, we can replace the `|2x+1|` with just `2x+1` because x is getting closer and closer to 0 (0 makes x >= -1/2 true)
jim_thompson5910
  • jim_thompson5910
Similarly, \[ |2x-1| = \begin{cases} 2x-1 \ \text{ if } \ x \ge \frac{1}{2}\\ -2x+1 \ \text{ if } \ x < \frac{1}{2}\\ \end{cases} \] So `|2x-1|` can be replaced with `-2x+1` (x=0 makes x < 1/2 true)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Babynini
  • Babynini
How did you come up with the 1/2 's ?
jim_thompson5910
  • jim_thompson5910
solving 2x+1 >= 0, 2x+1 < 0, etc etc. The restrictions placed on each piece of the piecewise function
Babynini
  • Babynini
ah k gotcha.
Babynini
  • Babynini
So now we replace the values in the original with the ones you've just come up with.
jim_thompson5910
  • jim_thompson5910
correct
Babynini
  • Babynini
Just a sec.
jim_thompson5910
  • jim_thompson5910
ok
Babynini
  • Babynini
So it's [(2x+1)-(-2+1)]/x
jim_thompson5910
  • jim_thompson5910
close, there's an x missing
Babynini
  • Babynini
Right on the second 2, sorry xD
Babynini
  • Babynini
But that al simplifies to 4x/x?
Babynini
  • Babynini
which of course = 4
jim_thompson5910
  • jim_thompson5910
Sorry you should have this \[ \lim_{x\to 0} \frac{|2x-1|-|2x+1|}{x} = \lim_{x\to 0} \frac{(-2x+1)-(2x+1)}{x} \]
jim_thompson5910
  • jim_thompson5910
you somehow mixed up |2x-1| and |2x+1|
jim_thompson5910
  • jim_thompson5910
It should be -4. The graph confirms it https://www.desmos.com/calculator/4uqoaaryhi Definitely an odd and interesting graph
Babynini
  • Babynini
haha looks...cool?
Babynini
  • Babynini
okay, I got it right now :) so the entire limit = - 4
jim_thompson5910
  • jim_thompson5910
correct, as x gets closer and closer to 0 (from either side) the value of y gets closer and closer to -4
Babynini
  • Babynini
Fabulous. Thank you so much. So at the end I would just rewrite the original limit and then put it all equals -4? correct?
jim_thompson5910
  • jim_thompson5910
yeah after you simplify you'll get -4x/x = -4 then you just apply the limit \[\Large \lim_{x\to 0}(-4)\] to get -4 itself
Babynini
  • Babynini
oh! lovely!

Looking for something else?

Not the answer you are looking for? Search for more explanations.