anonymous
  • anonymous
Aluminum cylinder: length 1 m, diameter 1 cm Current: 1000 A Conductivity: σ=35 Sm/〖mm〗^2 Linear temperature coefficient: α=3.8∙〖10〗^(-3) 1/K Quadratic temperature coefficient: β=1.3∙〖10〗^(-6) 1/K^2 Heat transfer coefficient to the ambient air: λ=1 K/(Wm^2 ) 1)• Temperature of the aluminum rod with linear temperature dependency? 2).• Temperature of the aluminum rod with quadratic temperature dependency?
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Michele_Laino
  • Michele_Laino
is the current inside the aluminum rod a cause or is it an effect?
Michele_Laino
  • Michele_Laino
if it is a cause, then inside the aluminum rod we have this electric field \({\mathbf{E}}\): \[{\mathbf{j}} = \sigma {\mathbf{E}}\] where \({\mathbf{j}}\) is the current density vector, and \(\sigma\) is the conductivity of aluminum. Furthermore, the power over volume, dissipated in such rod of aluminum is given by the subsequent formula: \[W = \frac{{{{\mathbf{j}}^2}}}{\sigma }\] provided that we are in static condition of electricity
anonymous
  • anonymous
Hint: The electrical losses of the aluminum rod P_A transferred via heat to the ambiance can be computed with the temperature at the surface ϑ_S, the ambient temperature ϑ_A, and the surface A with the following equation: P_A=(ϑ_S-ϑ_A)/λA

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
so, thermal energy is: \[dQ = Wdt = \frac{{{{\mathbf{j}}^2}}}{\sigma }dt\] where the magnitude of \({\mathbf{j}}\), is: \[\frac{I}{S} = \frac{I}{{\pi {r^2}}}\] and: \(2r=1\;cm\)
Michele_Laino
  • Michele_Laino
I meant \(dQ\) is thermal energy over volume, of course

Looking for something else?

Not the answer you are looking for? Search for more explanations.