Melissa_Something
  • Melissa_Something
Log Question:
Mathematics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Melissa_Something
  • Melissa_Something
\[\log _{10} 1/\sqrt{10}\]
Melissa_Something
  • Melissa_Something
Sqrt 10/ 10 is wrong :(
Nnesha
  • Nnesha
\[\log_{10} \frac{1}{\sqrt{10}}\] like this ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Jhannybean
  • Jhannybean
Change of base: \(\log_a (x) =\dfrac{\log_b (x)}{\log_b (a)}\)
Melissa_Something
  • Melissa_Something
Oh yes! Lol
Nnesha
  • Nnesha
you can convert square root to an exponent if you want or use change of base formula
jango_IN_DTOWN
  • jango_IN_DTOWN
log(a/b)=log a-log b so the given expression becomes log 1-log sqrt 10 =-log sqrt 10 =-log (10)^1/2=-1/2
Jhannybean
  • Jhannybean
Lets take \(x=\dfrac{1}{\sqrt{10}}\)
Nnesha
  • Nnesha
\[\sqrt{y} \] can be written as \[\rm y^\frac{ 1 }{ 2 }\] so \[\rm \log_{10} \frac{ 1 }{ (10)^\frac{ 1 }{ 2 } }\] move the (10)^/2 at the numerator
Melissa_Something
  • Melissa_Something
So it would be \[\log 1/\sqrt{10} /\log 10\] ??
Melissa_Something
  • Melissa_Something
Oh oh okay
Jhannybean
  • Jhannybean
\[\begin{align} \log_{10} \left(\frac{1}{\sqrt{10}}\right) &=\frac{\log\left(\frac{1}{\sqrt{10}}\right)}{\log(10)}\\& = \frac{\log(1)-\log(\sqrt{10})}{\log(10)} \\&=\frac{-\frac{1}{2}\log(10)}{\log(10)}\\&=-\frac{1}{2} \end{align}\]
Melissa_Something
  • Melissa_Something
Wow thanks for all the support :o
Nnesha
  • Nnesha
typo (10)^{1/2} remember the exponent rule when move base from the numerator to denominator sign of the exponent would change \[\huge\rm \frac{ 1 }{ x^{-m }}= x^m\]
Melissa_Something
  • Melissa_Something
Yes oh my gosh thank you @Nnesha
Nnesha
  • Nnesha
u already got the answer so i'm just gonna work itout \[\log_{10} 10^{-\frac{1}{2}}\] apply the power rule power rule \[\large\rm log_b x^y = y \log_b x\] \[-\frac{1}{2} \log_{10}10\] log_{10} 10 = 1 so left wth -1/2

Looking for something else?

Not the answer you are looking for? Search for more explanations.