JozelynW
  • JozelynW
If the question says insert x=-5 into the equation 4^-x how would you do that? Would you say that 2 negatives equal a positive or just input -5
Algebra
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
jim_thompson5910
  • jim_thompson5910
you would replace x with -5 so 4^(-x) = 4^(-(-5)) the two negatives cancel to form a positive which is why 4^(-(-5)) = 4^5
anonymous
  • anonymous
yeah, it equal to positive
JozelynW
  • JozelynW
ok thank you i was just confused

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

JozelynW
  • JozelynW
what if its a positive number then?
JozelynW
  • JozelynW
@jim_thompson5910
jim_thompson5910
  • jim_thompson5910
like if x = 9 ?
jim_thompson5910
  • jim_thompson5910
if x = 9, then, \[\LARGE 4^{-x} = 4^{-9} = \frac{1}{4^9}\]
JozelynW
  • JozelynW
ok
JozelynW
  • JozelynW
what if x=1
jim_thompson5910
  • jim_thompson5910
the negative exponent tells us to take the reciprocal of the base to make the exponent positive \[\LARGE x^{-k} = \frac{1}{x^k}\]
JozelynW
  • JozelynW
so for 2^x+3 what would x=3 be then
jim_thompson5910
  • jim_thompson5910
\[\Large 2^x+3\] or \[\Large 2^{x+3}\] ??
JozelynW
  • JozelynW
the second 1
JozelynW
  • JozelynW
i think the answer would be 64
jim_thompson5910
  • jim_thompson5910
\[\Large 2^{x+3} = 2^{3+3} = 2^6 = 64\] I agree
JozelynW
  • JozelynW
Ok thanks so much, I'm going to need more help later thou.

Looking for something else?

Not the answer you are looking for? Search for more explanations.