USE SUMMATION NOTATION TO WRITE THE SUM... pls help!

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

USE SUMMATION NOTATION TO WRITE THE SUM... pls help!

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\sum_{n=1}^{??} 10(3)^{n-1}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

idk, I thought setting 7290 = 10(3)^n-1 would help but idk...
looks good to me
oh you need the upper limit right?
yes! ^_^
\[7290=10\times 3^{n-1}\] solve for \(n\) via \[279=3^{n-1}\] then just guess
find a power of 3 that gives \(729\)
ohhhhh 9
oops typo there \[729=3^{n-1}\]
no i don't think so
\(3^8=6561\) too big try a smaller one
the bases have to be the same right?
you are thinking too hard use a calculator \[3^2=9\\ 3^3=27\\ 3^4=81\\ 3^5=...\] keep going until you get it, it will be soon
yeah 3^6
that's why the upper limit is 7
ok so that makes your upper limit 7 i guess
thanks! :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question