AdamK
  • AdamK
Could someone explain the difference between the domain of f(x) = sqrt(2x^3 - 9x^2) vs 1/(sqrt(2x^3 - 9x^2)) I used this website to try and help but I still don't understand why 9/2 is not included in the domain of the second function. https://www.symbolab.com/solver/function-domain-calculator/domain%20f%5Cleft%28x%5Cright%29%3D%5Cfrac%7B1%7D%7Bsqrt%5Cleft%282x%5E%7B3%5E%7B%20%7D%7D-%209x%5E%7B2%7D%5Cright%29%7D/?origin=button
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
AdamK
  • AdamK
Never mind. That website is wrong. Wolfram Alpha got it right. 0 cannot be in the denominator so the domain of the second function is (9/2), infinite)
phi
  • phi
I assume the 2nd should have a square root in it , like this: \[ \frac{1}{\sqrt{2x^3 -9x^2} }\] ? if so the rules are: no divide by 0 not square root of a negative number

Looking for something else?

Not the answer you are looking for? Search for more explanations.