anonymous
  • anonymous
Simplify the equation (-6+i)/(-5+i)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
SolomonZelman
  • SolomonZelman
\(\large\color{black}{\displaystyle \frac{i-6}{i-5}}\)
SolomonZelman
  • SolomonZelman
multiply top and bottom times \(i+5\)
SolomonZelman
  • SolomonZelman
\(\large\color{black}{\displaystyle \frac{(i-6)\color{red}{\times (i+5)}}{(i-5)\color{red}{\times (i+5)}}}\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Nnesha
  • Nnesha
don't we have to change the sign of `imaginary term ` ?
anonymous
  • anonymous
i^2-30/i^2-25?
SolomonZelman
  • SolomonZelman
Nnesha it doesn't matter at all: \(a^2-b^2=(a-b)(a+b)\) will work to cancel the middle term with i to make the denominator a real number in either case.
SolomonZelman
  • SolomonZelman
Jmiliere, only the denominator is correct.
SolomonZelman
  • SolomonZelman
you forgot the MIDDLE TERM in the numerator
anonymous
  • anonymous
What middle term
SolomonZelman
  • SolomonZelman
\(\large\color{black}{ \displaystyle (i-6)(i+5)=i^2-6i+5i-30=i^2-i-30 }\)
anonymous
  • anonymous
So it's I-30/i^2-25
SolomonZelman
  • SolomonZelman
And if is \(i\) is here to denote \(\sqrt{-1}\), then you have: \(\large\color{black}{ \displaystyle \frac{(\sqrt{-1}~)^2-i-30 }{(\sqrt{-1}~)^2-25} }\)
SolomonZelman
  • SolomonZelman
\(\large\color{black}{ \displaystyle \frac{-1-i-30 }{-1-25} }\)
SolomonZelman
  • SolomonZelman
hope you're good from here
anonymous
  • anonymous
31+I/24
SolomonZelman
  • SolomonZelman
are you sure that on the bottom is 24 ?
anonymous
  • anonymous
It would be 26 because of negatives
SolomonZelman
  • SolomonZelman
yes \(\large\color{black}{ \displaystyle \frac{31+i }{26} }\)
anonymous
  • anonymous
Thank you!
SolomonZelman
  • SolomonZelman
Yw
Nnesha
  • Nnesha
ahh, I see. Answer would be the same. but i thought (have learned) we should multiply by the conjugate of the denominator which is -i-5.
SolomonZelman
  • SolomonZelman
-i-5 is same as -(i+5)....

Looking for something else?

Not the answer you are looking for? Search for more explanations.