sweetDanny
  • sweetDanny
Use cylindrical coordinates to evaluate the triple integral
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
sweetDanny
  • sweetDanny
pls check quest here
1 Attachment
sweetDanny
  • sweetDanny
give medals and all what you want :)
anonymous
  • anonymous
|dw:1446449631781:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

IrishBoy123
  • IrishBoy123
best viewed initially IMHO as the double integral \(\int\limits_{\theta = 0}^{2 \pi} \; \int\limits_{r=0}^{1/2} (4 - 16r^2)r \quad r \, dr \, d\theta\) which can then be written as the triple integral \(\int\limits_{\theta = 0}^{2 \pi} \; \int\limits_{r=0}^{1/2} \int\limits_{z=0}^{4-16r^2} r^2\, dr \, d\theta\, dz\), as dan suggests ...though the first step in then actually doing it is effectively to re-write it again as the double by doing the dz bit first. when you do it, it should boil down to this: \(2\pi \int\limits_{0}^{1/2} (4 - 16r^2)r^2 \, dr \)
sweetDanny
  • sweetDanny
thanks... it was correct :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.