sweetDanny
  • sweetDanny
what angle for the shaded region should be? I tried everything.... am frozen!!! any help?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
sweetDanny
  • sweetDanny
?
1 Attachment
Maddy1251
  • Maddy1251
@Hero ?
IrishBoy123
  • IrishBoy123
|dw:1446510919298:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

IrishBoy123
  • IrishBoy123
|dw:1446510953325:dw|
sweetDanny
  • sweetDanny
so the region shaded is from ??? to ???
amistre64
  • amistre64
|dw:1446511182018:dw| this is the region you picked in your picture ...
sweetDanny
  • sweetDanny
that what I wrote... webwork did not take it
amistre64
  • amistre64
because it shades the wrong portion of the circle ...
sweetDanny
  • sweetDanny
do I try 3pi/2 to 3pi/4?
amistre64
  • amistre64
your angles are in the right spots, they just are named bad
amistre64
  • amistre64
3pi/4 to .... whats another for -3pi/4? so that it is between 0 and 2pi?
sweetDanny
  • sweetDanny
I tried 0 to 2pi...nop
IrishBoy123
  • IrishBoy123
you are posting triple integrals and you cannot work the right way around a polar plot seriously!
sweetDanny
  • sweetDanny
it is double integral polar... I tried 3pi/2 to 3pi/4 not good
sweetDanny
  • sweetDanny
ops. I got it. it is 3pi/4 to 5pi/4

Looking for something else?

Not the answer you are looking for? Search for more explanations.