anonymous
  • anonymous
Can someone evaluate this? Integrate this function from [0,a] where f(x)dx/f(x)+f(a-x)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\int\limits_{0}^{a}\frac{ f(x)dx}{ f(x)+f(a-x) }\]
anonymous
  • anonymous
-> Provided that the function is both Continuous and differentiable
Photon336
  • Photon336
@Kainui

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

freckles
  • freckles
try to sub u=a-x
freckles
  • freckles
if you don't know where to go from there, show me what you have after doing that.
freckles
  • freckles
I will give one more hint just in case you aren't there and when you back I'm not here... \[\text{ If } \int_0^a g(x) dx=\int_0^a h(x) dx \text{ then } \\ 2 \int_0^a g(x) dx=\int_0^a g(x) dx+\int_0^a h(x) dx=\int_0^a (g(x)+h(x) )dx\]
freckles
  • freckles
\[\text{ If } 2 \int\limits_0^a g(x) =\int\limits_0^a (g(x)+h(x)) dx \\ \text{ then } \int\limits_0^a g(x) dx= \frac{1}{2} \int\limits_0^a (g(x)+h(x)) dx\]
freckles
  • freckles
anyways holler if you get stuck somewhere but please show me your work so I can know where you are stuck like even the substitution thing I asked about earlier

Looking for something else?

Not the answer you are looking for? Search for more explanations.