anonymous
  • anonymous
Find if the series converges and if so, find its sum
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\sum_{k=1}^{\infty} 1/(k+2)(k+3)\]
anonymous
  • anonymous
My textbook gives an answer of 1/3 but I can't get that. I split it into partial fractions then do the integral test and get a divergent result
anonymous
  • anonymous
\[\sum_{k=1}^\infty\frac{1}{(k+2)(k+3)}\le\sum_{k=1}^\infty\frac{1}{k^2}\]so the series converges, as you already know. To find the value, like you said, break up into partial fractions: \[\frac{1}{(k+2)(k+3)}=\frac{1}{k+2}-\frac{1}{k+3}\]so you have \[\sum_{k=1}^\infty \left(\frac{1}{k+2}-\frac{1}{k+3}\right)=\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\cdots\]See a pattern?

Looking for something else?

Not the answer you are looking for? Search for more explanations.