anonymous
  • anonymous
Find the dimensions of a rectangle with area 343 m2 whose perimeter is as small as possible.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Vocaloid
  • Vocaloid
first take the square root of 343 to find the side length then multiply that by 4
Directrix
  • Directrix
Courtesy of @MikeyMaximum xy = 343 y = 343/x P(x) = Perimeter = 2x+2y P(x) = 2x + 686x^-1 dP/dx = 2 - 686/x^2 = 0 for maximum or minimum 2x^2 - 686 = 0 x = √ (343) = 7√7 y = 7√7 also Those are the dimensions. Concept from @Allan The minimum perimeter for a rectangle of any given area is a square whose side measure would be the square root of the area.
Directrix
  • Directrix
@hpacheco518

Looking for something else?

Not the answer you are looking for? Search for more explanations.