korosh23
  • korosh23
Physics 12 Question! A 4.6 kg mass P is held by a pendulum string, a horizontal wire, and gravity. What is the tension in the pendulum? Wait for the Free Body Diagram.
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
korosh23
  • korosh23
|dw:1446814618536:dw|
korosh23
  • korosh23
@Michele_Laino if you are not busy, can you help me with this? Thank you.
Michele_Laino
  • Michele_Laino
I'm working on your question...

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

korosh23
  • korosh23
ok :)
Michele_Laino
  • Michele_Laino
do you know the value of the tension of the horizontal wire?
korosh23
  • korosh23
No it is not given, but I know the value of the Ft, 49.3 N. My teacher gave me the ansewr, but he did not explain how he got it.
Michele_Laino
  • Michele_Laino
is Ft the tension of the string? right?
korosh23
  • korosh23
It says the answer for the tension in the pendulum string is 49.3 N, so yes.
Michele_Laino
  • Michele_Laino
sorry! Is Ft the final result?
korosh23
  • korosh23
This 49.3 N is the final answer, I want to help you to get the ansewr faster. :)
korosh23
  • korosh23
Can you show me how to get that answer please?
Michele_Laino
  • Michele_Laino
yes!
Michele_Laino
  • Michele_Laino
for stability, we can write this vector equation: \[\huge {{\mathbf{T}}_S} + {\mathbf{W}} + {{\mathbf{T}}_W} = {\mathbf{0}}\] such vector equation, is equivalent to the subsequent scalar equations: \[\huge \begin{gathered} {T_S}\cos \theta - W = 0 \hfill \\ \\ - {T_S}\sin \theta + {T_W} = 0 \hfill \\ \end{gathered} \] where \(T_S,\,T_W,\,W\) are like below
Michele_Laino
  • Michele_Laino
|dw:1446826540943:dw|
korosh23
  • korosh23
yes so far so good
Michele_Laino
  • Michele_Laino
and: \(\Large \theta= 24\) degrees, furthermore: \(\Large W=m \cdot g\) where \(\Large m=4.6\). Please note that the vector equation expresses the first law of Newton
korosh23
  • korosh23
yes
korosh23
  • korosh23
Ts cos 24 = W whcih is m.g Ts = m.g / cos 24 = 49 .3 N Awsome ! :D
Michele_Laino
  • Michele_Laino
so, from the first scalar equation, we can write this: \[\huge {T_S} = \frac{W}{{\cos \theta }} = \frac{{mg}}{{\cos \theta }} = ...?\]
Michele_Laino
  • Michele_Laino
:)
korosh23
  • korosh23
Fantastic. Thank you my friend. :)
Michele_Laino
  • Michele_Laino
:) :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.