IrishBoy123
  • IrishBoy123
linear system of 1st order DE's
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
IrishBoy123
  • IrishBoy123
say i have a system of linear DE's \(\dot x = x + y\) \(\dot y = x - y\) just made that up so the numbers may be inconvenient; and to be clear, \( \dot x, \dot y\) means \( \frac{dx}{dt}, \frac{dy}{dt}\) ; and \(x = x(t)\), \(y = y(t)\) then \[\left[\begin{matrix}\dot x \\ \dot y\end{matrix}\right] = \left[\begin{matrix}1 & 1 \\ 1 & -1\end{matrix}\right] \left[\begin{matrix}x \\ y\end{matrix}\right]\] with eigenvalues \( \; \pm \sqrt{2}\) but what if it's \(\dot x = x + y \color{red}{+2}\) \(\dot y = x - y \color{red}{+3}\) ie just adding in those constants?? i can't remember but i think i need to use superposition, ie from \[\left[\begin{matrix}\dot x \\ \dot y\end{matrix}\right] = \left[\begin{matrix}1 & 1 \\ 1 & -1\end{matrix}\right] \left[\begin{matrix}x \\ y\end{matrix}\right] + \left[\begin{matrix}2 \\ 3 \end{matrix}\right]\] so separately, i find the particular solution \[\left[\begin{matrix}\dot x \\ \dot y\end{matrix}\right] = \left[\begin{matrix}2 \\ 3 \end{matrix}\right]\] \[\rightarrow \left[\begin{matrix} x \\ y\end{matrix}\right]_p = t \left[\begin{matrix}2 \\ 3 \end{matrix}\right] + \left[\begin{matrix}C_x \\ C_y \end{matrix}\right]\] **i'm looking at finding fixed points; and sketching the phase diagram**. so, for the phase diagram, i then find a way to build that extra "particular" bit in? doesn't feel right though. isn't there a better way to do this?!?! have googled like crazy and nothing there that i can find. many thanks in advance 😋
anonymous
  • anonymous
Wow Thats quit hard!
ganeshie8
  • ganeshie8
undetermined coefficients should work smoothly in finidng a particular solution : let \(\vec{c}=\begin{pmatrix}c_1\\c_2\end{pmatrix}\) be a particular solution. plugging this into the system gives \[\left[\begin{matrix} 0\\ 0\end{matrix}\right] = \left[\begin{matrix}1 & 1 \\ 1 & -1\end{matrix}\right] \left[\begin{matrix}c_1 \\ c_2\end{matrix}\right] + \left[\begin{matrix}2 \\ 3 \end{matrix}\right] \] we can solve \(\vec{c}\) as the matrix is invertible..

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

IrishBoy123
  • IrishBoy123
thanks ganesh i eventually did this by ID'ing the fixed points \(\dot x = x + y +2 = 0 \\ \dot y = x - y +3 = 0 \) \(\implies x,y = -\frac{5}{2}, \frac{1}{2}\) then re-centering round the fixed point gives \(X = x+\frac{5}{2}, Y = y -\frac{1}{2}; \quad \dot X = \dot x, \; \dot Y = \dot y \) so \(\dot X = X - \frac{5}{2} + Y + \frac{1}{2} +2 = X+Y= 0 \\ \dot Y = X - \frac{5}{2} - (Y + \frac{1}{2} ) +3 = X-Y=0 \) so we have the same eigenvalues..... and hey presto 💥 your solution yields \(c_1 + c_2 = 2\\c_1 - c_2 = 3\) \(c_1, c_2 = \frac{5}{2}, -\frac{1}{2} \) the method i am using is intended to unravel phase diagrams for non linear. i think i have overlooked the linear approach, which is not good ;-( i think i am explaining myself really badly here, but your post was a tremendous help. i will try make this clearer tomorrow when i have more time to sift through it.....
IrishBoy123
  • IrishBoy123
i have to close this to open another but i still intend to come back to it......if that's ok.

Looking for something else?

Not the answer you are looking for? Search for more explanations.