anj123
  • anj123
A plane flying horizontally at an altitude of 3 mi and a speed of 580 mi/h passes directly over a radar station. Find the rate at which the distance from the plane to the station is increasing when it is 4 mi away from the station.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Michele_Laino
  • Michele_Laino
we can make this drawing: |dw:1447002351927:dw|
Michele_Laino
  • Michele_Laino
If I call with \(D(t)\) the dstance: airplane-radar station, then I can write: \[\Large D\left( t \right) = \sqrt {{3^2} + {{\left( {vt} \right)}^2}} \] Now, please you have to compute the first derivative of \(D\) with respect to time
Michele_Laino
  • Michele_Laino
of course \(v=580\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.