anonymous
  • anonymous
minimize f=x^2+y^2 with x+2y=5
AP Math
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
IrishBoy123
  • IrishBoy123
you wanna use calculus? if so, single variable calculus? if so, use \(x+2y = 5\) to replace x or y in \(f=f(x,y)\) so that you have \(f=f(x)\) or \(f=f(y)\)......as opposed to the current \(f=f(x,y)\) and then do a derivative \(\dfrac{df}{dx}\) or \(\dfrac{df}{dy}\) to find turning points....and then check if min or max.
anonymous
  • anonymous
Another suggestion via Lagrange multipliers. With \(f(x,y)=x^2+y^2\) and \(g(x,y)=x+2y-5\), the Lagrangian is \[\mathcal{L}(x,y,\lambda)=x^2+y^2+\lambda(x+2y-5)\]Take your partial dertivatives and set equal to \(0\): \[\left.\begin{array}{l} \dfrac{\partial\mathcal{L}}{\partial x}=2x+\lambda\\[1ex] \dfrac{\partial\mathcal{L}}{\partial y}=2y+2\lambda\\[1ex] \dfrac{\partial\mathcal{L}}{\partial \lambda}=x+2y-5 \end{array}\right\}=0\]From here it's just a matter of solving for \(\lambda\) and you'll get the minimum of \(f\) right away.
Error1603
  • Error1603
h

Looking for something else?

Not the answer you are looking for? Search for more explanations.