anonymous
  • anonymous
an object is propelled upward from the top of a building with an initial velocity of 68ft/sec. the height h (in feet) of the object after t sec is given by h=-16t^2+68t+60 a) what is the initial height of the object? b)when is the object 102 ft above the ground? c)when does the object hit the ground?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
SolomonZelman
  • SolomonZelman
\(\large\color{black}{ \displaystyle h(x)=-16t^2+68t+60 }\) `PART [A]` The intial height is at 0 seconds (or, at t=0). Alternatively, the initial height is h(0). \(\large\color{black}{ \displaystyle h(0)=-16(0)^2+68(0)+60 =\quad? }\) `PART [B]` When is the object 102 feet above the ground? Alternatively, when is the height of the object is 102 feet? In other words, at what time, or at what value of t do get height 102 or h(t)=102. \(\large\color{black}{ \displaystyle 102=-16t^2+68t+60 }\) And solve for t. `PART [C]` When does the object hit the ground? When the object hits the ground, the height is 0, or h(t)=0. \(\large\color{black}{ \displaystyle 0=-16t^2+68t+60 }\) And solve for t. (Exclude negative solutions for t, because time can't be negative)

Looking for something else?

Not the answer you are looking for? Search for more explanations.