ashontae19
  • ashontae19
checking answers on polyonimals
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ashontae19
  • ashontae19
@Michele_Laino
ashontae19
  • ashontae19
Michele_Laino
  • Michele_Laino
in a polynomial of \(n-\)th degree there are \(n+1\) constants or coefficients

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
I think it is correct!
ashontae19
  • ashontae19
so which one was wrong?
Michele_Laino
  • Michele_Laino
for first question about the perimeter, I need to know the text whereas for second question, I think you are right
ashontae19
  • ashontae19
was it about name thr polynomials?
Michele_Laino
  • Michele_Laino
a \(3-\)degree polynomial, can be called trinomial of third degree
Michele_Laino
  • Michele_Laino
it can also be called cubcic function, or cubic polynomial
ashontae19
  • ashontae19
http://prntscr.com/92eqtv
ashontae19
  • ashontae19
can you see that?
Michele_Laino
  • Michele_Laino
yes! Please wait, I'm computing the requested perimeter...
ashontae19
  • ashontae19
OK
Michele_Laino
  • Michele_Laino
here is my result for perimeter: \[\Large 20{x^5} + 56{x^4} + 26{x^3} + 26{x^2} + 64x + 16\]
ashontae19
  • ashontae19
could you show your work so i can get it
ashontae19
  • ashontae19
so was my answer wrong because i got 20x^5+4x^4-2x^3-4x^2?
Michele_Laino
  • Michele_Laino
here is my computation: \[\begin{gathered} p = 2\left( {6{x^2}} \right) + 4\left( {2{x^5} + 4{x^4} + 4{x^3} + {x^2} + 5x} \right) + 4\left( {4x} \right) + \hfill \\ + 2\left( {3{x^4} - 2} \right) \hfill \\ + 2\left( {4{x^4} + 3{x^3} + {x^2} + 4x} \right) \hfill \\ + 4\left( {3{x^5} + 5{x^4} + {x^3} + 2{x^2} + x + 6} \right) + 4\left( {4x} \right) + \hfill \\ + 2\left( {3{x^4} - 2} \right) \hfill \\ \end{gathered} \]
ashontae19
  • ashontae19
ok thanxs what about my other answers?
Michele_Laino
  • Michele_Laino
please wait a moment I'm working on your question...
Michele_Laino
  • Michele_Laino
I got this: \[\begin{gathered} difference = 2\left( {3{x^5} + 2x + 3{x^4} - 2{x^2}} \right) - \hfill \\ - 2\left( {2{x^5} + 3x + {x^4} + {x^3} - x} \right) = \hfill \\ = 2{x^5} + 4{x^4} - 2{x^3} - 4{x^2} \hfill \\ \end{gathered} \]
ashontae19
  • ashontae19
for which one?
Michele_Laino
  • Michele_Laino
2-nd question of "Mega Mansion Problem"
ashontae19
  • ashontae19
ok what about the last one?
Michele_Laino
  • Michele_Laino
here is the right formula: \[Volume = \left( {3{x^5} + 2x} \right)\left( {3{x^4} - 2{x^2}} \right)4x = ...?\] please continue
ashontae19
  • ashontae19
okay so was i right?
Michele_Laino
  • Michele_Laino
I'm sorry, your answer is wrong
ashontae19
  • ashontae19
okay so yours is right the one above?
Michele_Laino
  • Michele_Laino
yes! please continue, it is the first step
Michele_Laino
  • Michele_Laino
hint: here is the next step: \[\begin{gathered} Volume = \left( {3{x^5} + 2x} \right)\left( {3{x^4} - 2{x^2}} \right)4x = ...? \hfill \\ = \left( {3{x^5} + 2x} \right)\left( {12{x^5} - 8{x^3}} \right) = ...? \hfill \\ \end{gathered} \]
ashontae19
  • ashontae19
you want me to finish it @Michele_Laino
Michele_Laino
  • Michele_Laino
here is my result: \[\begin{gathered} Volume = \left( {3{x^5} + 2x} \right)\left( {3{x^4} - 2{x^2}} \right)4x = ...? \hfill \\ = \left( {3{x^5} + 2x} \right)\left( {12{x^5} - 8{x^3}} \right) = ...? \hfill \\ = 36{x^{10}} - 24{x^8} + 24{x^6} - 16{x^4} \hfill \\ \end{gathered} \]
ashontae19
  • ashontae19
(6x^5)(4x^2)
Michele_Laino
  • Michele_Laino
you have to apply the "foil" method to this step: \[\left( {3{x^5} + 2x} \right)\left( {12{x^5} - 8{x^3}} \right) = ...?\]
Michele_Laino
  • Michele_Laino
or the distributive property of multiplication over addition
ashontae19
  • ashontae19
36x^10-24x^8 +24x^6-16x^4
Michele_Laino
  • Michele_Laino
correct!
ashontae19
  • ashontae19
foreal?!! thanxs is that the answer though??

Looking for something else?

Not the answer you are looking for? Search for more explanations.