Daniellelovee
  • Daniellelovee
Suppose that lengths of newborn girls are normally distributed with a mean of 49.2 cm and a standard deviation of 1.8 cm.Which lengths of female newborns are in the 90th percentile or higher?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Daniellelovee
  • Daniellelovee
@kropot72 please help me
amistre64
  • amistre64
do you have a way to compute a normalCDF function?
amistre64
  • amistre64
or is this just tables?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Daniellelovee
  • Daniellelovee
no sorry just tables
amistre64
  • amistre64
if we assume your tables are left tailed, then the upper 90 is equal to the lower 10 id start with defining your z score with that is given.
Daniellelovee
  • Daniellelovee
ok so μ = 49.2 and σ = 1.8
amistre64
  • amistre64
\[z_{.0100}=\frac{x-mean}{sd}\] the table gives you z_{.0100}and you are finding x right?
amistre64
  • amistre64
you can use z_{.9000} as well if your left tail table goes that high
Daniellelovee
  • Daniellelovee
alright sure
amistre64
  • amistre64
49.2 + 1.8 |z|= x how do you determine z?
Daniellelovee
  • Daniellelovee
would it be 0.90?
amistre64
  • amistre64
prolly not ...find the closest field value on your table, to .0100 or .9000 and then add the row to the col. |dw:1447521717501:dw|
amistre64
  • amistre64
duh, 10% = .1000 .... brain slipped into neutral
Daniellelovee
  • Daniellelovee
lol yeah im sorry the z-scores are difficult for me
amistre64
  • amistre64
different authors use different table formats so i wont be able to guide you without knowing what your table looks like
amistre64
  • amistre64
spose we had a zscore of say: 1.28 how would you find its value in the table?
Daniellelovee
  • Daniellelovee
would it help if I showed you what I did?
amistre64
  • amistre64
it might, but the table would be the most helpful item
Daniellelovee
  • Daniellelovee
I did 49.2+1.8(0.8186)=50.67
amistre64
  • amistre64
your zscore is not correct
Daniellelovee
  • Daniellelovee
is that my table is from my book :/
amistre64
  • amistre64
http://figures.boundless.com/18108/full/normal01.jpeg
Daniellelovee
  • Daniellelovee
yes my table looks similar to that
amistre64
  • amistre64
1 Attachment
amistre64
  • amistre64
notice that .9000 is in row 1.2 and closer to the value in .08 than it is .09 row+col = z z=1.28 is a better value to use
Daniellelovee
  • Daniellelovee
therefore 51.5
amistre64
  • amistre64
x=49.2+1.8(1.28) yes
Daniellelovee
  • Daniellelovee
alright thank you so much :)
amistre64
  • amistre64
z= invNORM(.9000) would be the calculator function
kropot72
  • kropot72
\[\large l \ge51.5\ cm\]
amistre64
  • amistre64
pfft, no newborns are greater than 51.5 cm .... so im sticking to l=51.5 ;)

Looking for something else?

Not the answer you are looking for? Search for more explanations.