Destinyyyy
  • Destinyyyy
Refresher..
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Destinyyyy
  • Destinyyyy
1 Attachment
Destinyyyy
  • Destinyyyy
Positive graph.. Vertex- (-1,0)
Destinyyyy
  • Destinyyyy
f(x)=(x-h)^2 +k f(x)= a(x-(-1))^2 +0 = a(x+1)^2 +0

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Destinyyyy
  • Destinyyyy
Not sure if I did that right so far..
phi
  • phi
yes. and to find a, use a point on the curve (but not the vertex) for example (0,1)
phi
  • phi
1= a(0+1)^2 1 = a so a is 1 and the equation is y= (x+1)^2 or multiplied out y= x^2 +2x+1
phi
  • phi
or you could test the point (-1,0) in each of the choices that works for choices B and C then use (0,1) to see C is the only equation that works
Destinyyyy
  • Destinyyyy
True.
phi
  • phi
another way: use -b/(2a) to find the x value of the vertex you want that to be -1 and only choice C works
Destinyyyy
  • Destinyyyy
Hmm never thought of that
phi
  • phi
the first two choices have b=0 so you get x=0. those are wrong. choice C gives -2/2= -1 (that works) choice D give s -(-2)/2= +1 (nope)
Destinyyyy
  • Destinyyyy
Okay.
Destinyyyy
  • Destinyyyy
Next problem..
Destinyyyy
  • Destinyyyy
Find the range of the quadratic function. f(x)= x^2 -8x-5
phi
  • phi
parabola with \( \cup\) shape so from the y value of the vertex to + infinity
Destinyyyy
  • Destinyyyy
Um do you mean -5 to infinity
Destinyyyy
  • Destinyyyy
Sorry I dont really remember how to solve this one.
phi
  • phi
range are the y values it is U shaped, so you want the smallest y value (which happens at the vertex)
phi
  • phi
you find the x value of the vertex using -b/(2a) and use that x value to find the corresponding y value. that will be the smallest y value on the curve. and of course y will go to + infinity as you put in bigger and bigger x values
Destinyyyy
  • Destinyyyy
Okay thats what I thought
phi
  • phi
but the smallest y is not -5
Destinyyyy
  • Destinyyyy
Yeah sorry I was confused at first
Destinyyyy
  • Destinyyyy
Vertex- (4,-12) Range- [-21, infinity)
phi
  • phi
yes, looks good
Destinyyyy
  • Destinyyyy
Okay
Destinyyyy
  • Destinyyyy
A rain gutter is made from sheets of aluminum that are 18 inches wide by turning up the edges to form right angles. Determine the depth of the gutter that will maximize its cross-sectional area and allow the greatest amount of water to flow.
Destinyyyy
  • Destinyyyy
A= 18x -2x^2
Destinyyyy
  • Destinyyyy
x= -(-2) over 2(18) .... I think I need to change it to -2x^2 +18
Destinyyyy
  • Destinyyyy
Answer -> 4.5
phi
  • phi
A= 18x -2x^2 yes, but generally we write it in standard form A= -2x^2 + 18x this is a \(\cap\) shape, and its vertex has the biggest y value (in this case largest area)
phi
  • phi
x of vertex is -b/(2a)= -18/(2*-2) = 18/4 = 9/2 = 4.5 yes you found the correct answer: d= 4.5 inches to maximizes the area of the cross-section
Destinyyyy
  • Destinyyyy
Okay thank you.

Looking for something else?

Not the answer you are looking for? Search for more explanations.