anonymous
  • anonymous
A relation R is defined on the real numbers by aRb if a-b is an integer. Prove that R is an equivalence relation and determine the equivalence class of 1/2
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
You could try this type of argument, but I'm questioning my own correctness... if a and b and c must be real, then if d, e, q, r and n are integers: \[\frac{d}{e} - \frac{q}{r} = n\] where a = c/d and b = q/r, which implies: dr - qe = ner .... which are also all integers. Then the following is true for all integer pairs Int:Int, if a = d:r and b = q:e and ( c = d:r or q:e not equal with a or b respectively ) (a, a), (b, b), (c, c) are all members of R (reflexive) (a, b), (b,a) [where a or b are interchangable with c] are both members of R (symmetric) (a, b) , (b, c) and (a,c) are all members of R (transitive)
anonymous
  • anonymous
anyone have any other ideas?

Looking for something else?

Not the answer you are looking for? Search for more explanations.