• RamiroCruzo
A challenge Question ~~~~~~~~~~~~~~~~~ Note: Don't misunderstand that I need help....Just for fun....Try to explain the best & then I will do... A body of mass m falls from height h on ground. If 'e' be the coefficient of restitution of collision between the body and ground, then the distance it travels before coming to rest
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
  • IrishBoy123
you build a geometric series in e copying from Wiki: \(\text{Speed of separation} = e \times \text{Speed of approach}\) so if hits deck first at velocity \(v \{= \sqrt{2gh} \}\), then it rebound at \(e v\). It rises to height \(\dfrac{(ev)^2}{2g}\) and so covers a distance twice that before it lands again, ie \(\dfrac{(ev)^2}{g}\) then rebounds at speed \(e^2v\), so covers total distance for next cycle of \(\dfrac{(e^2v)^2}{g}\) and so on so we are adding \(h + \dfrac{e^2v^2}{g} + \dfrac{e^4v^2}{g} + \dots\) or \(h+ 2he^2 + 2h e^4 + \dots \) \(= 2h+ 2he^2 + 2h e^4 + \dots -h\) \(= 2h(1+ e^2 + e^4 + \dots) -h)\) \(=\dfrac{2h}{1-e^2}-h\) or other algebraic equiv.

Looking for something else?

Not the answer you are looking for? Search for more explanations.