haleyelizabeth2017
  • haleyelizabeth2017
State the domain and range of the relation y=arccos x. Please no direct answers. Thanks.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
DanJS
  • DanJS
first, what is the domain/range for y=cos(x)
haleyelizabeth2017
  • haleyelizabeth2017
The domain is all real numbers?
haleyelizabeth2017
  • haleyelizabeth2017
And the range is −1 ≤ y ≤ 1...

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

DanJS
  • DanJS
yes
DanJS
  • DanJS
the arccos is the inverse function... the range of cos(x) will become the domain of arccos(x)
haleyelizabeth2017
  • haleyelizabeth2017
Okay
DanJS
  • DanJS
y = cos(x) ------ y = arccos(x) cos(y) = x inverse
DanJS
  • DanJS
domain and range of x = cos(y) domain, x is -1 to 1,
DanJS
  • DanJS
range resulting from that domain cos(y) = -1 at y=pi to cos(y)=1 at y = 0 range 0 to pi
DanJS
  • DanJS
you have to restrict the cosine functions domain , in order to take its inverse cosine is not 1-to-1 function, unless you only take the restricted domain..
haleyelizabeth2017
  • haleyelizabeth2017
Okay, thanks
DanJS
  • DanJS
inverse is a reflection over line y=x, you can only do that if you take the restricted domain on cos(x) from 0 to pi/2 that is why the inverse cosine is just that one section
DanJS
  • DanJS
|dw:1449275568269:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.