anonymous
  • anonymous
Let \(x,y\) be integers such that \(10000 \leq x \lt 100000\), and \(y\) is obtained from \(x\) by removing the third digit. Determine all pairs \(x,y\) as above such that \(\frac{x}{y}\) is also an integer.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
i just copy this question from a web, and really dont know the question asking because i cant read the latex. can you retype for me, @ganeshie8 what the question asking here :v
ganeshie8
  • ganeshie8
Suppose \(x\) is an five digit positive integer : \[x = \overline{abcde}\]
ganeshie8
  • ganeshie8
remove the middle digit to get \(y\) : \[y = \overline{abde}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ganeshie8
  • ganeshie8
clear so far ?
anonymous
  • anonymous
oh, okay i see now. thanks
ganeshie8
  • ganeshie8
You need to find all \(x\) such that \(\dfrac{x}{y}\) is am integer
ganeshie8
  • ganeshie8
that is the given question
anonymous
  • anonymous
waw, it is so hard for me. give me some hints :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.