anonymous
  • anonymous
I need help with Reimann sum for evaluating a limit.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1 Attachment
amistre64
  • amistre64
where you stuck at?
anonymous
  • anonymous
I need help starting off

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
might help to write out the first few iterations, n=1,2,3 ... but thats just a thought
anonymous
  • anonymous
ok one sec
amistre64
  • amistre64
4/1 (sqrt(4(1)/(1)) 4/2 (sqrt(4(1)/(2)+sqrt(4(2)/(2)) 4/3 (sqrt(4(1)/(3)+sqrt(4(2)/(3)+sqrt(4(3)/(3)) 4/4 (sqrt(4(1)/(4)+sqrt(4(2)/(4)+sqrt(4(3)/(4)+sqrt(4(4)/(4)) \[\sum_{k=1}^{n}\frac{4}{n}\sqrt{\frac{4k}{n}}\] looks like a right side type of problem to me
anonymous
  • anonymous
right side?
amistre64
  • amistre64
yeah, the value of the function on the right side of a 'rectangle'
anonymous
  • anonymous
oh ok yea I think I know what u mean
amistre64
  • amistre64
\[\sum_{i=1}^{n} f(a+i\frac{b-a}{n})\frac{b-a}{n}\]
amistre64
  • amistre64
4-0 = 4 a = 0 wouldnt this be the integral of sqrt(x), from 0 to 4?
anonymous
  • anonymous
yea
anonymous
  • anonymous
So then I just use the fundamental theorem on this correct?
amistre64
  • amistre64
might as well :)
anonymous
  • anonymous
I got 16/3
amistre64
  • amistre64
we can assess a similar function, -x^2 +4, from 0 to 2 -x^3/3 +4x, at x=2 8-8/3 = (24-8)/3 .. yeah 16/3
anonymous
  • anonymous
ok awesome Thanks for the help
amistre64
  • amistre64
yep :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.