blackstreet23
  • blackstreet23
A particle of mass m moves in a circle of radius R at a constant speed v, as shown below. The motion begins at point Q at time t = 0. Determine the angular momentum of the particle about the axis perpendicular to the page through point P as a function of time. (Use any variable or symbol stated above along with the following as necessary: t.)
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
blackstreet23
  • blackstreet23
gollywolly
  • gollywolly
\[L=mr^2 (\omega_i+\ \alpha \Delta t)\]
IrishBoy123
  • IrishBoy123
to get you started: \(\large \vec L = \vec r \times \vec p = \vec r \times m \vec v =m |\vec r| \, |\vec v| \sin \theta \; \hat n=m |\vec r| \, |\vec v| \; \hat n\) or just plain old... \(L = m r v\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.