• anonymous
A 61 g ice cube can slide without friction up and down a 31 ∘ slope. The ice cube is pressed against a spring at the bottom of the slope, compressing the spring 12 cm . The spring constant is 20 N/m . When the ice cube is released, what distance will it travel up the slope before reversing direction?
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • jamiebookeater
I got my questions answered at in under 10 minutes. Go to now for free help!
  • IrishBoy123
for a simple approach, find the equilibrium extension, ie the extension as if were the mass at rest on the spring. oscillation should be symmetrical about that point. more detailed approach: energy of system to start with: \(E_o = \dfrac{1}{2}kx^2 = \dfrac{1}{2}(20)(0.12)^2\) when the cube has moved a distance x up the slope \(E(x) = mg x \sin 31 + \dfrac{1}{2}k(0.12-x)^2 + \dfrac{1}{2}m \dot x^2 = E_o\) \(\dot E(x) = mg \color{red}{\dot x} \sin 31 + 2\dfrac{1}{2}k(0.12-x)(-\color{red}{\dot x}) + 2\dfrac{1}{2}m \color{red}{\dot x} \ddot x = 0\) \(\implies mg \sin 31 - k(0.12-x)+m\ddot x = 0\) tidy up and solve the DE.

Looking for something else?

Not the answer you are looking for? Search for more explanations.