anonymous
  • anonymous
Values of following....I'm doing fourier series btw.. Sin(n*pi),cos(n*pi),sin(2n*pi),cos(2n*pi),sin(2*pi),cos(2*pi)..
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
hartnn
  • hartnn
so, if you have the unit circle in mind, you can answer these easily :) https://en.wikipedia.org/wiki/Unit_circle#/media/File:Unit_circle_angles_color.svg \( n\pi \) means 180 degrees rotation from 0, for each values of n. so, 0,180,360,540,... \( 2n\pi \) means 360 degrees rotation from 0, for each values of n. so, 0,360,720,... for sin, we see y-co-ordinate, sin 0 = 0, sin 180 = 0, so on, so \(\sin n\pi =0 \) always. similarly, \(\sin 2\pi = 0 \\ \sin 2n\pi = 0\) Now for cos, we see x co-ordinate, cos 0 = 1, cos pi = -1 cos 2pi = 1 so on. \(\cos 2n\pi = 1\) \(\cos 2\pi = 1\) \(\cos n \pi = +1 \) for n = even, \(\cos n \pi = -1 \) for n = odd, which we write as \(\cos n\pi = (-1)^n\) simply because (-1)^n = +1 for n = even and -1 for n = odd. let me know if any doubts :) (n*pi)s and (2n*pi)s are easy, more trickier are (n*pi/2')s :P
hartnn
  • hartnn
@simran2590
anonymous
  • anonymous
Thanks..can you also explain sin and cos values for n*pi?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

hartnn
  • hartnn
did above... \(\sin n\pi = 0 \) \(\cos n\pi = (-1)^n\) what exactly are you looking in the explanation?
anonymous
  • anonymous
Sorry I meant n*pi/2

Looking for something else?

Not the answer you are looking for? Search for more explanations.