scarlettred
  • scarlettred
help me please
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
scarlettred
  • scarlettred
jim_thompson5910
  • jim_thompson5910
which trig function would tie together theta, x and 6?
scarlettred
  • scarlettred
sin i belive

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

jim_thompson5910
  • jim_thompson5910
nope, tangent actually
jim_thompson5910
  • jim_thompson5910
http://www.mathwords.com/s/sohcahtoa.htm
jim_thompson5910
  • jim_thompson5910
we can say \[\Large \tan(\text{angle}) = \frac{\text{opposite}}{\text{adjacent}}\] \[\Large \tan(\theta) = \frac{6}{x}\]
jim_thompson5910
  • jim_thompson5910
then we apply the inverse tangent, or arctangent, to both sides \[\Large \tan(\theta) = \frac{6}{x}\] \[\Large \arctan\left(\tan(\theta)\right) = \arctan\left(\frac{6}{x}\right)\] \[\Large \theta = \arctan\left(\frac{6}{x}\right)\]
jim_thompson5910
  • jim_thompson5910
so we can say \[\Large \theta = \arctan\left(\frac{6}{x}\right)\] or \[\Large \theta = \tan^{-1}\left(\frac{6}{x}\right)\] arctan and \(\Large \tan^{-1}\) (inverse tangent) are effectively the same thing
scarlettred
  • scarlettred
thank you so much
jim_thompson5910
  • jim_thompson5910
no problem

Looking for something else?

Not the answer you are looking for? Search for more explanations.