YoloShroom
  • YoloShroom
Estabon poured himself a hot beverage that had a temperature of 205F then set it on the kitchen table to cool. The temp of the kitchen ws a constant 71F. If the drink cooled to 182 F in 3 min, how long will it take to cool to 105 F???
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
YoloShroom
  • YoloShroom
@AlexandervonHumboldt2
YoloShroom
  • YoloShroom
@Luigi0210
triciaal
  • triciaal
hint y = m x + b y is the hot temp m is the drop in temp per min and b is the temp of the room

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

YoloShroom
  • YoloShroom
Doesnt this problem pertain to newton's law of cooling?
rvc
  • rvc
rate of cooling? do you know the formula?
baru
  • baru
hi :D
YoloShroom
  • YoloShroom
nu ;-;
rvc
  • rvc
d theta/dt
baru
  • baru
newtons law of cooling: rate of change of temprature of a body is proportional to difference between its temprature and surrounding temperature
rvc
  • rvc
perfect :)
baru
  • baru
\(T_b\): temperature of beverage \(T_k\): temperature of kitchen=71 \[\frac{dT_b}{dt}=-k(T_b-T_k)\]
baru
  • baru
substitute \(T_k\) ; solve the differential equation for \(T_b\)
YoloShroom
  • YoloShroom
annnd im still confused lol
baru
  • baru
you have to solve that equation by using "seperation of variables"
baru
  • baru
\[\frac{dT_b}{dt}=-k(T_b-71)\]
baru
  • baru
\[\frac{dT_b}{(T_b-71)}=-kdt\]
baru
  • baru
integrate both sides

Looking for something else?

Not the answer you are looking for? Search for more explanations.