anonymous
  • anonymous
algebra
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
anonymous
  • anonymous
use this formula\[y=mx+c\]where\[y=vertical~axis\]\[x=horizontal~axis\]\[m=slope/gradient\]\[c=y-intercept\]
anonymous
  • anonymous
\[To~find~m\]\[m=\frac{ y_2-y_1 }{ x_2-x_1 }\]\[First~point(1,1)=(x_1,y_1)\]\[Second~point(7,4)=(x_2,y_2)\]substitute this value into that formula

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[m=\frac{ 4-1 }{ 7-1 }\]\[m=\frac{ 3 }{ 7 }\]
anonymous
  • anonymous
slope is 1/2
anonymous
  • anonymous
sorry,typo... yup slope is 1/2
anonymous
  • anonymous
thats what i though =)
anonymous
  • anonymous
i got it
anonymous
  • anonymous
In the slope-intercept form of a straight line, I have y, m, x, and c. So the only thing I don't have so far is a value for is c (which gives me the y-intercept). Then all I need to do is plug in what they gave me for the slope and the x and y from this particular point, and then solve for c:
anonymous
  • anonymous
\[y=mx+c\]i randomly choose the first point\[(1,1)~as~(x,y)\]\[m=\frac{ 1 }{ 2 }\]substitute this value into that formula\[(1)=\frac{ 1 }{ 2 }(1)+c\]\[c=\frac{ 1 }{ 2 }\]
Directrix
  • Directrix
Did you get y = 1/2 x + 1/2 or something else? @MARC_
anonymous
  • anonymous
yep i get that eqn
anonymous
  • anonymous
:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.