anonymous
  • anonymous
Which sequences are geometric? –2.7, –9, –30, –100, ... –1, 2.5, –6.25, 15.625, ... 9.1, 9.2, 9.3, 9.4, ... 8, 0.8, 0.08, 0.008, ... 4, –4, –12, –20, ...
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
SolomonZelman
  • SolomonZelman
The theory of geometric sequence. (BRIEFLY) Suppose you have the following sequence: \( \tiny \\[0.6em] \) \(\large\color{#0000ff }{ \displaystyle a_1,~~a_2,~~a_3,~~a_4,~~a_5,~~a_6~~\dots }\) Then, in order for this sequence to be geometric, it has to yiled the same result in \( \tiny \\[0.6em] \) \(\large\color{#0000ff }{ \displaystyle a_{n+1}~~/~~a_{n}=r }\) for all terms of the sequence. That is, \(\large\color{#0000ff }{ \displaystyle a_{2}~~/~~a_{1}=r }\) \(\large\color{#0000ff }{ \displaystyle a_{3}~~/~~a_{2}=r }\) \(\large\color{#0000ff }{ \displaystyle a_{4}~~/~~a_{3}=r }\) \(\large\color{#0000ff }{ \displaystyle a_{5}~~/~~a_{4}=r }\) And so forth... where each of the above must yiled the same result.
SolomonZelman
  • SolomonZelman
For example \(\large\color{#0000ff }{ \displaystyle 2,~4,~8,~16 }\) is a GEOMETRIC sequence because: \(\large\color{#0000ff }{ \displaystyle 16/8=2 }\) \(\large\color{#0000ff }{ \displaystyle 8/4=2}\) \(\large\color{#0000ff }{ \displaystyle 4/2=2 }\) And notince they all yield the same ratio (r).
SolomonZelman
  • SolomonZelman
And another example \(\large\color{#0000ff }{ \displaystyle 5,~~25,~~100,~~500, ~~2500 }\) is NOT a GEOMETRIC sequence, because \(\large\color{#0000ff }{ \displaystyle 2500/500=5 }\) \(\large\color{#0000ff }{ \displaystyle 500/100=5 }\) \(\large\color{#0000ff }{ \displaystyle 100/25=\color{red}{\LARGE 4} }\) (ratio "r" is not same) \(\large\color{#0000ff }{ \displaystyle 25/5=5 }\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.