anonymous
  • anonymous
2.If the radius of a circle is doubled, what happens to the area?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@just_one_last_goodbye help please
xMissAlyCatx
  • xMissAlyCatx
|dw:1449673340087:dw|
xMissAlyCatx
  • xMissAlyCatx
I made you an example :P

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Thank you ^_^
SolomonZelman
  • SolomonZelman
\(\large\color{#000000 }{ \displaystyle A_{r} =\pi r^2 }\) when radius is multiplied times some ((positive)) k, \(\large\color{#000000 }{ \displaystyle A_{kr} =\pi (k\times r)^2 }\) \(\large\color{#000000 }{ \displaystyle A_{kr} =k^2\pi r^2 }\) (In the subscript of the area, I am putting the radius, to make this clear) So the circle with radius of r•k, is k² times greater. \(\large\color{#000000 }{ \displaystyle A_{rk}/A_{r} =\frac{k^2\pi r^2 }{\pi r^2 }=k^2}\)
SolomonZelman
  • SolomonZelman
That means that when the radius is tripled, for instance, \(\large\color{#000000 }{ \displaystyle A_{r} =\pi r^2 }\) when radius is multiplied times 3 (in this new example) \(\large\color{#000000 }{ \displaystyle A_{3r} =\pi (3\times r)^2 }\) \(\large\color{#000000 }{ \displaystyle A_{3r} =3^2\pi r^2 }\) \(\large\color{#000000 }{ \displaystyle A_{3r} =9\pi r^2 }\) So the circle with radius of 3r, is 9 times greater. \(\large\color{#000000 }{ \displaystyle A_{rk}/A_{r} =\frac{9\pi r^2 }{\pi r^2 }=9}\)
SolomonZelman
  • SolomonZelman
((And when I say that the circle is greater, I am really saying that the area of the circle is greater... ))
SolomonZelman
  • SolomonZelman
Can you telll me what happens when the radius is quadrupled?

Looking for something else?

Not the answer you are looking for? Search for more explanations.