anonymous
  • anonymous
Find the mass of the triangular region with vertices (0, 0), (4, 0), and (0, 6), with density function ρ(x,y)=x^2+y^2.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
IrishBoy123
  • IrishBoy123
are you looking for a cool change of variable [off the cuff, dunno]; or just how to process it [i can help] as a double integration actually physically drawing the triangle will make the integration limits seem more obvious.
anonymous
  • anonymous
Ya I realized this after I've solve it aha . I was looking for the bounds, been a long day and felt kind of lazy but after I say down and looked at it I got it.
IrishBoy123
  • IrishBoy123
\[\Large M = \int\limits_{y=0}^{y=6} \; \int\limits_{x=0}^{ 4-\frac{2}{3}y} dx \, dy \qquad \rho(x,y)\] \[\Large = \int\limits_{y=0}^{y=6} \; \int\limits_{x=0}^{ 4-\frac{2}{3}y} dx \, dy \qquad x^2 + y^2\] http://www.wolframalpha.com/input/?i=int_%7Bx%3D0%7D%5E%7B4%7D++int_%7By%3D0%7D%5E%7B+6-%283%2F2%29x%7D++%28x%5E2+%2B+y%5E2%29+dy+dx+ http://www.wolframalpha.com/input/?i=int_%7By%3D0%7D%5E%7B6%7D++int_%7Bx%3D0%7D%5E%7B+4-%282%2F3%29y%7D++%28x%5E2+%2B+y%5E2%29+dx+dy+#

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

IrishBoy123
  • IrishBoy123
ie \[\Large = \int\limits_{x=0}^{4} \; \int\limits_{y=0}^{ 6-\frac{3}{2}x} dy \; dx \qquad x^2 + y^2\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.