anonymous
  • anonymous
How to integrate e^(e^x). I used taylor series to find the approximation. Is there another way of solving it? Thx
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
MD152727
  • MD152727
http://integrals.wolfram.com/index.jsp?expr=e%5E%28e%5Ex%29&random=false
anonymous
  • anonymous
Thanks mate but what do they mean by E?
anonymous
  • anonymous
And how did it arrive to that answer

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Kainui
  • Kainui
The only way I can see to integrate it is this way: \[e^y = \sum_{n=0}^\infty \frac{y^n}{n!}\] \[e^{e^x} = \sum_{n=0}^\infty \frac{e^{xn}}{n!}\] now you can integrate term by term of this power series.
anonymous
  • anonymous
Could you please show me the whole solution?
Kainui
  • Kainui
Nah, there's not really unless you want to define a new function.

Looking for something else?

Not the answer you are looking for? Search for more explanations.