jojokiw3
  • jojokiw3
Help with finding the equation of a line tangent to a graph.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
jojokiw3
  • jojokiw3
\[y = \ln x + \sin x\]
jojokiw3
  • jojokiw3
How do I start?
jojokiw3
  • jojokiw3
@satellite73

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

jojokiw3
  • jojokiw3
@whpalmer4
whpalmer4
  • whpalmer4
Take the derivative of \(y\) with respect to \(x\). Evaluate it at the point where you want the tangent line to touch the graph. That gives you the slope of the tangent line. Then find the correct \(y\)-intercept so that the tangent line actually touches the graph at that point. Example: find the equation of a tangent line to \(y=3x^2\) at \(x = 1\) \[y = 3x^2\]\[\frac{dy}{dx} = 6x\]evaluate that at \(x=1\): \[m = \frac{dy}{dx} = 6(1) = 6\]Slope of the tangent line is \(m = 6\) Now we need to find the value of \(y = f(1)\) to get the \(y\)-intercept: \[y = f(1) = 3(1)^2 = 3\]Tangent line has slope \(m = 6\) and passes through point \((1,3)\) so equation of tangent line is \[y = 6x+ b\]\[3=6(1)+b\]\[b=-3\]\[y =6x-3\] Plot showing function and tangent at \(y = 1\) attached.
1 Attachment

Looking for something else?

Not the answer you are looking for? Search for more explanations.