anonymous
  • anonymous
Which ordered pair is a solution to the system of equations? 2x - y = 5 3x + 2y = 4 1. (0,2) 2. (5,5) 3.(-1, -7) 4.(2, -1)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
bubblegum.
  • bubblegum.
hey :D welcome to OpenStudy!!
314dokg
  • 314dokg
(2, -1)
whpalmer4
  • whpalmer4
@314dokg please do not just post answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

bubblegum.
  • bubblegum.
x - y = 5 -------->equation 1 3x + 2y = 4 -------->equation 2 In equation 1-> x-y=5 x=y+5 substitute this value of x in equation 2 3x+2y=4 now we substitute x=y+5 in this equation 3(y+5)+2y=4 now open the brackets and simplify 3y+15+2y=4 5y+15=4 from here you wil get y once you get y you just put that value of y in any of equation 1 or equation 2 to get the value of x
314dokg
  • 314dokg
You just have to substitute.. (x, y) to the corresponding x and y's in the equation... it's just basic trial and error. for example 1.) (0,2) subsititute 2x - y = 5 (2)(0) - (2) = 5 0 - 2 = 5 if one side is the same with the other side. therefore you got the answer.. but since (0.2) is not then try the other one... just continue until it satisfy both solution
whpalmer4
  • whpalmer4
@bubblegum. you copied the first equation incorrectly, which will confuse the OP mightily when they find answers that do not appear in their choices... should be \[2x-y=5\]
bubblegum.
  • bubblegum.
aww D:
whpalmer4
  • whpalmer4
Solve that for \(y\):\[2x-y=5\]\[y = 2x-5\]Substitute in other equation \[3x+2y=4\]\[3x+2(2x-5)=4\]\[3x+4x-10=4\]\[7x=14\]etc.
whpalmer4
  • whpalmer4
@s00sm can you solve that for the value of \(x\)? Once you have \(x\), plug it into one of the equations and find the corresponding value of \(y\). What do you get?
anonymous
  • anonymous
x=2.
whpalmer4
  • whpalmer4
Good. How about the value of \(y\)?
anonymous
  • anonymous
no, no 5/2?
whpalmer4
  • whpalmer4
Mmmm...no. show me your work..
anonymous
  • anonymous
2x−y+y=5+y 2x=y+5 2x/2 = y+5/2 x= 5/2
whpalmer4
  • whpalmer4
I need to go to bed, so I'm just going to show you my work: We have 3 different equations to choose from: \[2x-y=5\]\[3x+2y=4\]\[y=2x-5\] we know that \(x=2\), so just plug it into one of the equations and solve for \(y\) \[2x-y=5\]\[2(2) - y = 5\]\[4 - y = 5\]\[4 = 5+y\]\[y=4-5 = -1\] or \[3x+2y=4\]\[3(2) + 2y = 4\]\[6+2y=4\]\[2y=4-6\]\[2y=-2\]\[y=-1\] or \[y=2x-5\](our substitution equation, and likely to be the easiest) \[y = 2(2)-5\]\[y=4-5\]\[y=-1\] As you can see, the same answer any way that you do it. Now that we think we have a solution, we must test it in both equations. Testing in just one is NOT sufficient to ensure a correct answer. \[2x-y=5\]\[2(2) - (-1) = 5\]\[4+1=5\checkmark\] \[3x+2y=4\]\[3(2) + 2(-1) = 4\]\[6-2=4\checkmark\] Our solution made all of the equations work, so it is valid.
anonymous
  • anonymous
oh pellet, im sorry! i appreciate it and i'm really sorry! I don't have a scanner and im pretty new ion this site. your explanation helped me understand that i'm a complete dumbass and this is isn't an insult, it's a complement bahhh simsorry! a medal and fan for you definitely! thank you
whpalmer4
  • whpalmer4
I'll do some more of these with you, but it will have to wait until after I've slept. Just takes a bit of practice and you'll be doing them without much trouble at all.
whpalmer4
  • whpalmer4
Mostly it is a matter of being methodical and careful. In my opinion, that's one of the enduring values of math classes, even if you don't end up doing anything in your career that involves solving math problems — you learn how to pay attention to detail.
anonymous
  • anonymous
it's alright! no, no, you don't have to do these with me, i appreciate it though, it's really my fault in not trying to practice more of it, and kind of my duty to practice on my own, but I do get stuck and well here I am. I don't want to burden you or anything! but i really appreciate it, you staying long enough to read and reply trying to educate a bum on the internet.

Looking for something else?

Not the answer you are looking for? Search for more explanations.