Jellybot23
  • Jellybot23
How on earth do you solve (e^x)(e^x+1)=1
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
MysticFury
  • MysticFury
uhhhh
Nnesha
  • Nnesha
is it \[(e^x)(e^{x+1})=1\] ?
Nnesha
  • Nnesha
if yes then use the exponent rule when we multiply same bases we should `add` the exponents \[\large\rm x^m \times x^n=x^{m+n}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
$$e^{-x} = (e)(e^x)$$ $$e^{2x} = e^{-1}$$ $$x = -0.5$$
Nnesha
  • Nnesha
and then use the fact ln cancel out the e\[\rm \cancel{\ln e}^a = a\]
Jellybot23
  • Jellybot23
Yes! Oh, so the two would just combine?
Jellybot23
  • Jellybot23
Wait, so if you added x and x+1, then would it just become e^2x+1?
Nnesha
  • Nnesha
is it e^{x+1} or\[ e^x+1 \] which one is correct
Jellybot23
  • Jellybot23
the first one e^{x+1}
Nnesha
  • Nnesha
alright good and yes then it would be \[\rm e^{2x+1}=1\]
Jellybot23
  • Jellybot23
and then just take the ln and solve for x, correct? :)
Nnesha
  • Nnesha
correct
Jellybot23
  • Jellybot23
Okay! Thank you so so much!
Nnesha
  • Nnesha
np :=))
Jellybot23
  • Jellybot23
After solving it, I got -1/2
Nnesha
  • Nnesha
that's correct!! good work

Looking for something else?

Not the answer you are looking for? Search for more explanations.