Landon34
  • Landon34
One number has a prime factorization of 2 3 • 3 2, and another number has a prime factorization of 2^2 • 3^3. Which of the following expressions would equal the greatest common factor of these two numbers? 2^5 • 3^5 2^3 • 3^3 2^2 • 3^2 2 • 3
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
one is \(2^2\times 3^2\) and the other is \(2^2\times 3^3\) like that?
Landon34
  • Landon34
yes.
anonymous
  • anonymous
take each factor you see to the lowest power you see in any one number in this case the lowest power of 3 is 2, so it would be \[2^2\times 3^2\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Landon34
  • Landon34
2^3
Landon34
  • Landon34
the first number is 2^3 instead of 2^2

Looking for something else?

Not the answer you are looking for? Search for more explanations.