steve816
  • steve816
Quick trigonometry question. Are you allowed to cross multiply to prove identities?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
generally you have to work one side to the other ... altering both sides at the same time is not a good approach.
ikram002p
  • ikram002p
Your allowed with caution for values that make denominator =0
amistre64
  • amistre64
cross multiplication, or working backwards is a good way to discover an approach to reach the solution tho. but your proofing has to rely on the manipulation of one side into the other.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

steve816
  • steve816
For example:\[\frac{ \cos \theta }{ \cos \theta - \sin \theta } = \frac{ 1 }{ 1 - \tan \theta }\]
steve816
  • steve816
Cross multiplying to prove this seems much easier.
amistre64
  • amistre64
just divide top and bottom by cos(t) ... right?
amistre64
  • amistre64
since tan(t) is not defined for cos(t)=0 anyways, then there is not discrepancy
ikram002p
  • ikram002p
Yeah showing cos t-sin t /cos = tan t -1 is easier
steve816
  • steve816
oh wow, you're right I guess.
steve816
  • steve816
Alright, thanks guys.

Looking for something else?

Not the answer you are looking for? Search for more explanations.