steve816
  • steve816
Help me prove this please???
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
steve816
  • steve816
\[\frac{ 1 - \sin \theta }{ \sec \theta } = \frac{ \cos^3 \theta }{ 1 + \sin \theta }\]
ganeshie8
  • ganeshie8
Take left hand side and multiply by a special kind of 1 : \[\dfrac{1+\sin\theta}{1+\sin\theta}\]
steve816
  • steve816
I already started the problem, and I'm wondering if I can simplify the left hand side by changing the sec to 1/cos, which then, you can multiply the numerator by cos and the denominator is just 1.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ganeshie8
  • ganeshie8
Did you take time to read my reply thoroguhly ?
steve816
  • steve816
Yes?, but I was wondering if I can simplify the sec theta first...
ganeshie8
  • ganeshie8
you could do that
steve816
  • steve816
And then, I should multiply by the special kind of 1 right?
ganeshie8
  • ganeshie8
Yes, give it a try
steve816
  • steve816
alright thanks.
steve816
  • steve816
Yup, I proved it!

Looking for something else?

Not the answer you are looking for? Search for more explanations.