BraydonLevi99
  • BraydonLevi99
Justify the last two steps of the proof. Give: RS = UT and RT = US Prove: RST = UTS
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
BraydonLevi99
  • BraydonLevi99
|dw:1450067152195:dw| |dw:1450067205622:dw|
anonymous
  • anonymous
ST=TS because it is the same line
BraydonLevi99
  • BraydonLevi99
It has to be a geometry VOCAB i think.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Well, I only use my common sense, so idk
BraydonLevi99
  • BraydonLevi99
Ugh... Okay.
anonymous
  • anonymous
Sorry man
jchick
  • jchick
reflexive is identity symmetric is commutative and transitive is .... self explanatory
jchick
  • jchick
st = ts , and st and ts are sides of triangles
jchick
  • jchick
they give 2 other equal sides, and the third side is equal to itself
jchick
  • jchick
which option is commutative and deals with 3 sides?
jchick
  • jchick
Symmetric Property of ; SAS
jchick
  • jchick
st = st is reflexive .... as in its an identity
jchick
  • jchick
@BraydonLevi99
mathstudent55
  • mathstudent55
Reflexive property of equality SSS

Looking for something else?

Not the answer you are looking for? Search for more explanations.