anonymous
  • anonymous
Given problem type SAA or ASA, how would you solve for the length of any of the remaining sides? A. Use the fact that the angles add up to 180 degrees, and then use the law of cosines. B. Use the fact that the angles add up to 180 degrees, and then use the law of tangents. C. Use the fact that the angles add up to 180 degrees, and then use the triangle inequality theorem. D. Use the fact that the angles add up to 180 degrees, and then use the law of sines. http://media.apexlearning.com/Images/201306/26/c135f4c0-b1b0-457e-971b-5a3f5830bdd9.jpg
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
mathmate
  • mathmate
Hints: If you know the length of any two sides and the included angle, you can use the cosine rule. Do that whenever you can. Otherwise.... if you know the length of only one side of a triangle, or two sides but NOT the included angle, use the law of sines. If you are solving for an angle, look for possible obtuse angles when using the sine rule.

Looking for something else?

Not the answer you are looking for? Search for more explanations.